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Abstract

In this paper, we study the one-parameter Lie groups of point transformations that leave invari-
ant the biharmonic partial differential equation (PDE) uxxxx + 2uxxyy + uyyyy = f(u). To this
end, we construct the Lie and Noether symmetry generators and present reductions of bihar-
monic PDE. When f is arbitrary function of u, we obtain the solution of biharmonic equation in
terms of Green function. The equation is further analysed when f is exponential function and
for general power law. Furthermore, we use Noether’s theorem and the ’multiplier approach’ to
construct conservation laws of the PDE.
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1 Introduction

The biharmonic equation is a fourth-order partial differential equation that has variety of ap-
plications in applied mathematics. It is studied in the theory of elasticity, mechanics of elastic
plates and in the slow motion of viscous fluids, inter alia [11, 15]. Moreover, it is used in the
modelling of thin structures which can react elastically to external forces. The term biharmonic
indicates that the function satisfying this equation satisfy the Laplace equation twice explicitly.
The earliest applications of biharmonic equation deal with the classical theory of elastic plates
developed by Bernouli, Euler, Lagrange, Germain, Poisson, Navier, Cauchy and Lamé. Moreover,
Kirchhoff, Levy, J. C. Maxwell and Sir Horace Lamb developed the mathematical modelling of
the theory of plates. The reduction of the analysis for two dimensional problem to the solutions
of the biharmonic equation is due to Airy, who used calculations in the design of the structural
support system for an astronomical telescope. Biharmonic equation and fourth order differential
equations are important topic formany researchers. For instance, Lie symmetries of homogeneous
biharmonic linear equation were given by Bluman et al. [3], while Bokhari et al. [4] considered
symmetries and integrability of the fourth order Euler Bernouli beam equation and Sripana and
Chatanin [16] studied Lie symmetry analysis and exact solutions to the quintic nonlinear beam
equation. Moreover, symmetry analysis of fourth order noise reduction partial differential equa-
tions were studied by Leach [10].

The nonlinear biharmonic equation in two independent variables x, y and one dependent vari-
able u is given by

uxxxx + 2uxxyy + uyyyy = f(u). (1)

We will compute the Lie & Noether symmetries and obtain reductions of biharmonic PDEs to
ODEs. Moreover, we find conservation laws by using celebrated Noether’s theorem and also by
means of multipliers approach. The article is arranged as, we firstly, present definitions and re-
sults that will be used in this sequel. In Section 2, the determining equations associated with
biharmonic PDE are obtained, Lie symmetries are calculated and reductions of biharmonic PDEs
to ODEs are presented. Noether symmetries and conservation laws are computed in Sections 3
and 4, respectively.

Recall that, the Lie point symmetry of a system of differential equation is a local group of
transformationswhichmaps each solution of the system to its another solution. These symmetries
are used to solve the differential equations. Moreover, Lie symmetries are applied to reduce the
order of differential equations and to obtain the conservation laws.

Variational symmetries or symmetries of Lagrangian also known as Noether symmetries and
Lie symmetries or symmetries of corresponding Euler-Lagrange equations (generally symmetries
of differential equations) are considerably studied in the literature ([1], [5]). Moreover, Lie sym-
metry method is powerful tool for solving differential equations, [6]. It is used to reduce the sys-
tems of differential equations into equivalent systems of simpler forms. Likewise, these methods
are used to reduce the order of differential equations and reductions of number of independent
variables in case of PDEs. The Noether symmetries are more powerful due to the fact that they
can give double reductions of differential equations [9]. In addition conservation laws are either
obtained from these symmetries by mean of celebrated Noether’s theorem ([8], [17]) or by direct
construction methods [2] or by partial Lagrangian approach [7].
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2 Lie Symmetries

We suppose, the PDE in equation (1) admits the one-parameter Lie group of point transfor-
mations with infinitesimal generator (vector field) given by,

X = ξ(x, y, u)
∂

∂x
+ ζ(x, y, u)

∂

∂y
+ η(x, y, u)

∂

∂u
. (2)

The fourth prolongation of the generator X in equation (2) is given by,

X [4] = X + η(1)x

∂

∂ux
+ η(1)y

∂

∂uy
+ η(2)xx

∂

∂uxx
+ . . .+ η(4)xxyy

∂

∂uxxyy
+ η(4)yyyy

∂

∂uyyyy
, (3)

here, the extended infinitesimals η(k) satisfies following relations,

η
(1)
i = Diη − (Diξj)uj , (4)

η
(k)
i1i2...ik

= Dikη
(k−1)
i1i2...ik−1

− (Dikξj)ui1i2...ik−1j , (5)

k = 1, 2, 3, 4 and Di being total derivative operator [3].

Here, the invariance condition is given by

X [4][uxxxx + 2uxxyy + uyyyy − f(u)]|uxxxx+2uxxyy+uyyyy−f(u)=0. (6)

The above equation leads to symmetry determining equation given by

[η(4)xxxx + 2η(4)xxyy + η(4)yyyy − ηf ′(u)]|(1) = 0. (7)

Now we consider some cases for the function f(u).

Case I: If f is arbitrary function of u then from symmetry determining equation (7) we get the
following admitted Lie point symmetry generators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = −y ∂

∂x
+ x

∂

∂y
, (8)

which is three dimensional Lie Algebra. The commutation relations satisfied by these symmetry
generators are given in Table 1.

Table 1: Lie brackets for the admitted Lie point symmetries of equation (1).

[Xi, Xj ] X1 X2 X3

X1 0 0 X2

X2 0 0 −X1

X3 −X2 X1 0

Reduction under X1, X2

Since [X1, X2] = 0, so either of X1 or X2 can be used to start reduction with. We begin with X1.

The characteristic equation associated with X1 =
∂

∂x
is

dx

1
=
dy

0
=
du

0
. (9)
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So we have y = r and u = w(r), therefore equation (1) reduces to

d4w

dr4
= f(w). (10)

The symmetry analysis of this equation is given by Bokhari et al [4]. For the present case the
equation (10) has symmetry generator

∂

∂r
. (11)

Moreover, in this case, the Lie reduction gives rise to the third order ODE given by

β

(
d

dα

(
β
d

dα

(
β
dβ

dα

)))
= f(α). (12)

Here, α = w and β = w′ are invariants of translation group generated by ∂

∂r
. In the absence of

further symmetries, one cannot further proceed. Reduction for the symmetry generator X3 is

16s2
d4w

ds4
+ 64s

d3w

ds3
+ 32

d2w

ds2
= f(w). (13)

By using v =
d2w

ds2
, the above equation takes the form

16s2
d2v

ds2
+ 64s

dv

ds
+ 32v = h(v). (14)

The solution of equation (14) subject to separated boundary conditions u(a) = 0 and u(b) = 0 is
given by

v =

∫ b

a

G(s, t)h(v)dt. (15)

Here G(s, t) is the Green function associated with the equation (14) and is given by

G(s, t) =


(a− s)(b− t)

x2(b− a)
, if a ≤ s < t,

(b− s)(a− t)

x2(b− a)
, if t ≤ s ≤ b.

(16)

Case II: If f is an exponential function of the form f = δeu, where δ = ±1, then the equation
(1) can be expressed as

uxxxx + 2uxxyy + uyyyy = δeu. (17)
The admitted Lie point symmetries in this case are

Y1 =
∂

∂x
, Y2 =

∂

∂y
, Y3 = x

∂

∂x
+ y

∂

∂y
− u

∂

∂u
, Y4 = y

∂

∂x
− x

∂

∂y
. (18)

which is four dimensional Lie algebra. The commutation relations for this case are expressed in
following Table 2.

Reduction under Y3, Y4
Here [Y3, Y4] = 0, so we can have reduction with either Y3 or Y4. We start with Y4. The Character-

istic equation corresponding to Y4 = y
∂

∂x
− x

∂

∂y
is

dx

y
=

dy

−x
=
du

0
. (19)
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Table 2: Lie brackets for the admitted Lie point symmetries of equation (17).

[Yi, Yj ] Y1 Y2 Y3 Y4
Y1 0 0 Y1 −Y2
Y2 0 0 Y2 Y1
Y3 −Y1 −Y2 0 0
Y4 Y2 −Y1 0 0

From above equation we have u = w and x2 + y2 = s.Using these change of variables, rewrite the
equation (17)

16s2
d4w

ds4
+ 64s

d3w

ds3
+ 32

d2w

ds2
= δew. (20)

Reductions of the PDE (17) for the generators ∂

∂x
and ∂

∂y
is

d4w

ds4
= δew. (21)

Case III: If f is general power law, f = δuσ where δ = ±1 and σ ̸= 0, 1 then rewrite the equation
(1) as

uxxxx + 2uxxyy + uyyyy = δuσ. (22)

The admitted Lie point symmetry generators are given by

Z1 =
∂

∂x
, Z2 =

∂

∂y
, Z3 = y

∂

∂x
− x

∂

∂y
, Z4 = x

∂

∂x
+ y

∂

∂y
− 4u

σ − 1

∂

∂u
. (23)

which is four dimensional Lie algebra. The commutation relations satisfied by these generators
are presented in Table 3.

Table 3: Lie brackets for the admitted Lie point symmetries of equation (22).

[Z1, Zj ] Z1 Z2 Z3 Z4

Z1 0 0 −Z2 Z1

Z2 0 0 Z1 Z2

Z3 Z2 −Z1 0 0
Z4 −Z1 −Z2 0 0

Reduction under Z1 and Z4

In this case the two symmetry generatorsZ1 andZ4 satisfy the relation [Z1, Z4] = Z1. This suggest
that reduction in this case should start with Z1. The similarity variables are y = r and u = w(r)
reduce the PDE (22) to an ordinary differential equation given by

d4w

dr4
= δwσ. (24)

which admits a Lagrangian L =
1

2
w′′2 − δ

σ + 1
wσ+1 with variational symmetry

∂

∂r
,

with corresponding Noether first integral leading to

−w′w′′′ +
1

2
w′′2 +

δ

σ + 1
wσ+1 = 0.
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This ODE admits two Lie symmetries

Y1 =
∂

∂r
, Y2 = r

∂

∂r
− 4

σ − 1
w
∂

∂w
.

and since [Y1, Y2] = Y2, a first reduction by Y1 leads to the second-order ODE

W 3W ′′ +
1

2
W 2W ′2 − δ

σ + 1
ασ+1 = 0.

whereW = W (α), α = w andW = w′. This second order ODE inherits the symmetry Y2 which
in the transformed variables is

Y ∗
2 = α

∂

∂α
+

3 + σ

4
W

∂

∂W
.

which has invariants β =
W

α
3+σ
4

and V =
W ′

α
σ−1
4

, so that the second order ODE reduces to the first

order ODE, after some calculations,

dv
dβ

=
(σ2 − 1)β3v + 2(σ + 1)β2v2 − 4δ

(σ + 1)β3[(σ + 3)β − 4v]
.

The above equation can expressed in the following form

dv
dβ

= A0 +

(
A1β +

A2

β3

)
v +

(
A3 +

A4

β3

)
v2 +

(
A5 +

A6

β
+
A7

β3

)
v3. (25)

Here Ai, 0 ≤ i ≤ 7 depend on δ and σ and are independent of s and v. If v0 = v0(β) is particular

solution of equation (25), the substitution v−v0 =
1

ϕ
reduces it to an Abel equation [13] of second

kind
ϕϕ′β = −(3f3v

2
0 + 2f2v0 + f1)ϕ

2 − (3f3v0+f2)ϕ− f3, (26)

where fi for 0 ≤ i ≤ 3depends on β and are coefficients of v3i in the equation (25). The substitution
ϕ = E(β)ψ brings equation (26) to the simpler form

ψψ′ = F1(β)ψ + F0(β), (27)

where F1(β) = −3f3v0+f2

E(β)
and F0(β) = − f3

E2(β)
. The equation (27) can be reduced by introduc-

ing a new independent variable γ =
∫
F (β)dβ to canonical form

ψψ′ = ψ + θ(γ), (28)

where θ(γ) = F0(β)

F1(β)
. The solutions of equation (28) are given by [14].

The reductions of PDE (22) for Lie symmetry ∂

∂y
is given by

d4w

dr4
= δwσ, (29)

Moreover, for the symmetry generator y ∂
∂x

− x
∂

∂y
, the PDE (22) reduces to

16s2
d4w

ds4
+ 64s

d3w

ds3
+ 32

d2w

ds2
= δwσ. (30)
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3 Noether Symmetries

The Noether symmetry or the strict variational symmetry is associated with the mechanical
systems having a Lagrangian L. Moreover, the Lagrangian function L is obtained from the action
integral given by

J [u] =

∫ ∫
S

L(x, y, u, ux, uy, uxx, uxy, uyy)dx dy. (31)

For details about the Lagrangian and relation ship between symmetries and conservation laws see
[8]. Now the Lagrangian L associated with the equation (1) is given by

L = g(u)− 1

2
u2xx − 1

2
u2yy − u2xy. (32)

Here, g′(u) = f(u). The vector field (2) is called a Noether symmetry (variational symmetry)
of Lagrangian L if the functional

∫ ∫
S
Ldxdy is invariant. It turns out that, with zero gauge, X

satisfies the invariance condition given by

X [2]L+ L(Dxξ +Dyζ) = 0. (33)

Here X [2] is the second prolongation of the vector field X given by

X [2] = X + η(1)x

∂

∂ux
+ η(1)y

∂

∂uy
+ η(2)xx

∂

∂uxx
+ η(2)xy

∂

∂uxy
+ η(2)yy

∂

∂uyy
. (34)

As in Lie symmetry, here we also consider cases on the function g(u).

Case I: If g(u) = δuσ , where σ ̸= 0,−5

3
and δ = ±1. Then from equation (33), we get the fol-

lowing Noether symmetries

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 = x

∂

∂x
+ y

∂

∂y
, V4 = −y ∂

∂x
+ x

∂

∂y
, V5 = − 2

σ
u
∂

∂u
. (35)

Case II: If g(u) = δu−
5
3 , then the admitted Noether symmetries are

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 = x

∂

∂x
+ y

∂

∂y
, V4 = −y ∂

∂x
+ x

∂

∂y
, V5 =

6

5
u
∂

∂u
. (36)

Case III: If g(u) = δeγu, where δ, γ = ±1. In this case the Noether symmetries are

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 = x

∂

∂x
+ y

∂

∂y
, V4 = −y ∂

∂x
+ x

∂

∂y
, V5 =

2

γ

∂

∂u
. (37)

Case IV: If g(u) = sin(u), then the Noether symmetries are

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 = x

∂

∂x
+ y

∂

∂y
, V4 = −y ∂

∂x
+ x

∂

∂y
, V5 = −2 tan(u)

∂

∂u
. (38)
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4 Conservation Laws

Conservation laws have many significant uses in the study of differential equations. In partic-
ular, with regard to integrability and linearization, constant of motion, analysis of solutions and
numerical solution methods. For variational equations, Noether’s theorem can be used to con-
struct the conserved vector (T x, T y). In the absence of knowledge of Noether symmetries or in
non variational cases, alternative approaches may be used like the ’multiplier’ method [3] and
some ’homotopy’ integral.

In our study we write the conservation laws as conserved vectors, i.e., if

DxT
x +DyT

y = 0, (39)

along the solutions of the differential equation E(x, y, u, ux, uy, uxx, . . .) = 0, then (T x, T y) is the
conserved vector and the conserved form is given by

T yDx− T xDy. (40)

Here Dx and Dy denote the total derivative operators and are given by

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ . . . ,

Dy =
∂

∂y
+ uy

∂

∂u
+ uyy

∂

∂uy
+ . . . .

(41)

Now, we state the Noether’s theorem and apply it to determine conservation laws.

Theorem 4.1. If the vector field X in (2) is a Noether symmetry then the conserved vector (T x, T y) is
given by

T x = Lξ + w

(
∂L

∂ux
−Dx

∂L

∂uxx
−Dy

∂L

∂uxy

)
+Dxw

∂L

∂uxx
+Dyw

∂L

∂uxy
, (42)

T y = Lζ + w

(
∂L

∂uy
−Dx

∂L

∂uxy
−Dy

∂L

∂uyy

)
+Dxw

∂L

∂uxy
+Dyw

∂L

∂uyy
. (43)

Herew =
(
η−uxξ−uyζ

)
is the characteristic ofX andDx, Dy are the total derivative operators

[3].

The conserved vectors can also be calculated by using multiplier method. For given indepen-
dent variables x, y and dependent variable u, the Euler operator is defined by

δ

δu
=

∂

∂u
−Dx

∂

∂ux
−Dy

∂

∂uy
+Dx

2 ∂

∂uxx
+Dy

2 ∂

∂uyy
+DxDy

∂

∂uxy
+ . . . . (44)

For a mth order partial differential equation

E(x, y, u, ux, uy, uxx, uxy, uyy . . .) = 0. (45)

The multiplier Q for (45) has the property

DxT
x +DyT

y = QE, (46)

for arbitrary function u(x, y) [12]. The determining equation formultipliers are obtained by taking
the variational derivative of (46) [12]

δ

δu
(QE) = 0. (47)
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equation (47) holds for arbitrary function u(x, y) not only for solutions of (45). We can find
conserved vectors using (46) after computing the multiplier from equation (47).

Now we find the conserved vectors by using Noether theorem and by multiplier approach.

4.1 Arbitrary g(u)

1. x∂y − y∂x - angular momentum :(
xg (u)− 1

2
xuxx

2 +
1

2
xuyy

2 − uxuyy − uyyyuxy + uyuxy − uxyyuxx − xuyuyyy

− xuyuxxy + yuxuyyy + yuxuxxy

)
Dx

+

(
yg (u) +

1

2
yuxx

2 − 1

2
yuyy

2 + uxuxy − uxyxuyy − uxxuy − uxxxuxy + xuyuxyy

+ xuyuxxx − yuxuxyy − yuxuxxx

)
Dy.

(48)

2. ∂y - linear momentum in y:(
g (u)− 1

2
uxx

2 +
1

2
uyy

2 − uyuyyy − uyuxxy

)
Dx

+

(
− uxyuyy − uxyuxx + uyuxyy + uyuxxx

)
Dy.

(49)

3. ∂x - linear momentum in x:(
uxyuyy + uxyuxx − uxuyyy − uxuxxy

)
Dx

+

(
− g (u)− 1

2
uxx

2 +
1

2
uyy

2 + uxuxyy + uxuxxx

)
Dy.

(50)

4. x∂x + y∂y :(
yg (u)− 1

2
yuxx

2 +
1

2
yuyy

2 + yuxy
2 − 2xuxuxxy − 2yuyuxxy − xuxuyyy − yuyuyyy

+ 2uxuxy + 2xuxxuxy + xuxyuyy + uyuyy

)
Dx

+

(
− xg (u)− 1

2
xuxx

2 +
1

2
xuyy

2 − xuxy
2 + xuxuxxx + yuyuxxx + 2xuxuxyy

+ 2yuyuxyy − uxuxx − yuxxuxy − 2uyuxy − 2yuyyuxy

)
Dy.

(51)
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5. −2
g(u)

g′(u)
∂u :

(
− 4

g(u)

g′(u)
uxxy − 2

g(u)

g′(u)
uyyy − 4ux uxy − 4

g(u)g′′(u)

(g′(u))2
ux uxy − 2uy uyy

− 2
g(u)g′′(u)

(g′(u))2
uy uyy

)
Dx

+

(
+ 2

g(u)

g′(u)
uxxx + 4

g(u)

g′(u)
uxyy + 2ux uxx + 2

g(u)g′′(u)

(g′(u))2
ux uxx + 4uy uxy

+ 4
g(u)g′′(u)

(g′(u))2
uy uxy

)
Dy.

(52)

Next, we consider some special cases for function g(u).

4.2 g(u) = δuσ

1. x∂y − y∂x:(
xδ uσ − 1

2
xuxx

2 +
1

2
xuyy

2 − uyyux − uyyyuxy + uxyuy − uxyyuxx − xuyuyyy

− xuyuxxy + yuxuyyy + yuxuxxy

)
Dx

+

(
yδ uσ +

1

2
yuxx

2 − 1

2
yuyy

2 + uxyux − uxyxuyy − uxxuy − uxxxuxy + xuyuxyy

+ xuyuxxx − yuxuxyy − yuxuxxx

)
Dy.

(53)

2. ∂y : (
δ uσ − 1

2
uxx

2 +
1

2
uyy

2 − uyuyyy − uyuxxy

)
Dx

+

(
− uyyuxy − uxyuxx + uyuxyy + uyuxxx

)
Dy.

(54)

3. ∂x: (
uyyuxy + uxyuxx − uxuyyy − uxuxxy

)
Dx

+

(
− δ uσ − 1

2
uxx

2 +
1

2
uyy

2 + uxuxyy + uxuxxx

)
Dy.

(55)
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Additionally, for the PDEs

1.

σuσ−1 − uxxxx − uyyyy − 2uxxyy = 0, (56)

we have additional conservation laws, in fact, infinitely many if we consider higher-order
cases.
Firstly, with additional first-order multipliers, we get, for e.g.,

a. Q = ex:

− 1

3
ex
(
3uyyy + 3uxxy − 2uxy + uy

)
Dx

− 1

3
ex
(
− 3uxyy − 3uxxx + uyy + 3uxx − 3ux + 3u

)
Dy.

(57)

b. Q = sinx:(
− uyyy sin (x)− uxxy sin (x) + 2/3uxy cos (x) +

1

3
uy sin (x)

)
Dx

+

(
uxyy sin (x) + uxxx sin (x)−

1

3
uyy cos (x)− uxx cos (x)− ux sin (x) + u cos (x)

)
Dy,

(58)

and an example of a higher-order multiplier/conservation law is

c. Q = uxxy :(
− 1

2
uyyyuxxy −

1

2
uxxy

2 +
1

2
uyyuxxyy +

1

3
uxyuxxxy −

1

6
uxxuxxyy +

1

3
uxxu

− 1

6
uxxuxxxx − 1

6
uxxuyyyy −

1

2
uyuxxyyy −

1

6
uyuxxxxy −

1

6
ux

2 +
1

6
uxuxxxxx

+
1

6
uxuxyyyy +

1

3
uuxxyyyy +

1

6
uuxxxxyy −

1

6
uuxxxxxx

)
Dx(

1

2
uxyyuxxy +

1

2
uxxxuxxy −

1

6
uyyuxxxy +

1

3
uxyuxxyy −

2

3
uxyu +

1

3
uxyuxxxx

+
1

3
uxyuyyyy −

1

2
uxxuxxxy +

1

3
uyux − 1

6
uyuxxxxx − 1

6
uyuxyyyy −

1

6
uxuxxyyy

+
1

3
uxuxxxxy −

1

6
uxuyyyyy +

1

6
uuxxxyyy −

1

6
uuxxxxxy +

1

3
uuxyyyyy

)
Dy.

(59)
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2.

σδuσ−1 − uxxxx − uyyyy − 2uxxyy = 0, σ = −2, (60)

(a) Q = x2uy − y2uy + 2 yu − 2 yxux:

− 1

12u2

[(
8uy

2u2 + 4uxxu
3 − 12uyyu

3 + 3x2uxxyyu
3 − 3 y2uxxyyu

3

+ 3x2uxxxxu
3 − 3 y2uxxxxu

3 − 2uxy
2u2x2 − 10uxxyu

2yxux

− 6uyyyu
2yxux + 6uxyu

2yxuxx + 6uyyu
2yxuxy − 6uyu

2yxuxyy

− 2uyu
2yxuxxx + 6 yxuxxxyu

3 + 6 yxuxyyyu
3 − 6uyu

2yuyy

− 2uyu
2yuxx + 4uxxyu

2x2uy − 4uxxyu
2y2uy + 10uyyu

2xux

− 12uxyu
2xuy − uxxu

2uyyx
2 + uxxu

2uyyy
2 − 2uxxu

2xux

− 4uxu
2uxyy + 6uyyyu

2x2uy − 6uyyyu
2y2uy − 2uxu

2uxyyy
2

+ 2uxu
2uxyyx

2 + 3uyy
2u2y2 + 18uyyyyu

3 + 6xuxxxu
3 + 2uxy

2u2y2

− 3uyy
2u2x2 + 6uxyyxu

3 + 18uxxyyu
3 + 6x2δ − 6 y2δ

)
Dx(

3uxyyyx
2u3 − 3uxyyyy

2u3 + 6uyyyxu
3 + 3uxxxyx

2u3 − 3uxxxyy
2u3

+ 6uxxyxu
3 − 8uxu

2uy − 18 yuxxxu
3 − 18uxyyyu

3 + 8uxyyu
2yxux

− 2uyyu
2yxuxx + 4uyu

2uxxyyx+ 12uxxxu
2yxux + 6 yxu3uyyyy

+ 6 yxu3uxxyy + 3uxu
2uxxyy

2 + 5uxyyu
2y2uy − 5uxyyu

2x2uy

− 3uxxxu
2x2uy + 3uxxxu

2y2uy − 2uyyu
2xuy + 3uyyu

2uxyx
2

− 3uyyu
2uxyy

2 − 12uxyu
2xux − 4uxy

2u2yx+ 10uxxu
2xuy

− 6uxx
2u2yx+ 3uxxu

2uxyx
2 − 3uxxu

2uxyy
2 + 4uyu

2uxyy

+ 2uxu
2yuyy + uxu

2uyyyy
2 − uxu

2uyyyx
2 + 6uxu

2yuxx

− 3uxu
2uxxyx

2 + 16uxyu
3 + 12 yxδ

)
Dy

]
.

(61)

4.2.1 g(u) = δu− 5
3

i. x∂y − y∂x:

− 1

2u
5
3

(
− 2xδ + xuxx

2u5/3 − xuyy
2u5/3 + 2uxuyyu

5/3 + 2uyyyuxyu
5/3 − 2uyuxyu

5/3

+ 2uxyyuxxu
5/3 + 2xuyuyyyu

5/3 + 2xuyuxxyu
5/3 − 2 yuxuyyyu

5/3

− 2 yuxuxxyu
5/3

)
Dx

+
1

2u
5
3

(
2 yδ + yuxx

2u5/3 − yuyy
2u5/3 + 2uxuxyu

5/3 − 2uxyxuyyu
5/3 − 2uxxuyu

5/3

− 2uxxxuxyu
5/3 + 2xuyuxyyu

5/3 + 2xuyuxxxu
5/3 − 2 yuxuxyyu

5/3

− 2 yuxuxxxu
5/3

)
Dy.

(62)
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ii. ∂y :

− 1

2u
5
3

(
− 2 δ + uxx

2u5/3 − uyy
2u5/3 + 2uyuyyyu

5/3 + 2uyuxxyu
5/3

)
Dx(

− uxyuyy − uxyuxx + uyuxyy + uyuxxx

)
Dy.

(63)

iii. ∂x: (
uxyuyy + uxyuxx − uxuyyy − uxuxxy

)
Dx

1

2u
5
3

(
− 2 δ − uxx

2u5/3 + uyy
2u5/3 + 2uxuxyyu

5/3 + 2uxuxxxu
5/3

)
Dy.

(64)

4.3 g(u) = sin(u)

i. x∂y − y∂x:(
x sin (u)− 1

2
xuxx

2 +
1

2
xuyy

2 − uyyux − uyyyuxy + uxyuy − uxyyuxx − xuyuyyy

− xuyuxxy + yuxuyyy + yuxuxxy

)
Dx

+

(
y sin (u) +

1

2
yuxx

2 − 1

2
yuyy

2 + uxyux − uxyxuyy − uxxuy − uxxxuxy + xuyuxyy

+ xuyuxxx − yuxuxyy − yuxuxxx

)
Dy.

(65)

ii. ∂y : (
sin (u)− 1

2
uxx

2 +
1

2
uyy

2 − uyuyyy − uyuxxy

)
Dx

+

(
− uyyuxy − uxyuxx + uyuxyy + uyuxxx

)
Dy.

(66)

iii. ∂x: (
uxyuyy + uxyuxx − uxuyyy − uxuxxy

)
Dx

+

(
− sin (u)− 1

2
uxx

2 +
1

2
uyy

2 + uxuxyy + uxuxxx

)
Dy.

(67)

5 Conclusions

In this paper, we have classified the symmetries and conservation laws of the fourth-order
biharmonic PDE; the technique presented here set the scene for further interesting studies of high-
order nonlinear PDEs of mathematical physics. One can consider time dependent biharmonic
equation in (2 + 1) dimension.
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