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Abstract

In this paper, we study the one-parameter Lie groups of point transformations that leave invari-
ant the biharmonic partial differential equation (PDE) tzeze + 2Uzayy + Uyyyy = f(u). To this
end, we construct the Lie and Noether symmetry generators and present reductions of bihar-
monic PDE. When f is arbitrary function of u, we obtain the solution of biharmonic equation in
terms of Green function. The equation is further analysed when f is exponential function and
for general power law. Furthermore, we use Noether’s theorem and the ‘multiplier approach’ to
construct conservation laws of the PDE.
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1 Introduction

The biharmonic equation is a fourth-order partial differential equation that has variety of ap-
plications in applied mathematics. It is studied in the theory of elasticity, mechanics of elastic
plates and in the slow motion of viscous fluids, inter alia [11, 15]. Moreover, it is used in the
modelling of thin structures which can react elastically to external forces. The term biharmonic
indicates that the function satisfying this equation satisfy the Laplace equation twice explicitly.
The earliest applications of biharmonic equation deal with the classical theory of elastic plates
developed by Bernouli, Euler, Lagrange, Germain, Poisson, Navier, Cauchy and Lamé. Moreover,
Kirchhoff, Levy, ]J. C. Maxwell and Sir Horace Lamb developed the mathematical modelling of
the theory of plates. The reduction of the analysis for two dimensional problem to the solutions
of the biharmonic equation is due to Airy, who used calculations in the design of the structural
support system for an astronomical telescope. Biharmonic equation and fourth order differential
equations are important topic for many researchers. For instance, Lie symmetries of homogeneous
biharmonic linear equation were given by Bluman et al. [3], while Bokhari et al. [4] considered
symmetries and integrability of the fourth order Euler Bernouli beam equation and Sripana and
Chatanin [16] studied Lie symmetry analysis and exact solutions to the quintic nonlinear beam
equation. Moreover, symmetry analysis of fourth order noise reduction partial differential equa-
tions were studied by Leach [10].

The nonlinear biharmonic equation in two independent variables z, y and one dependent vari-
able u is given by
Upgze T 2Uggyy + Uyyyy = f(10). (1)

We will compute the Lie & Noether symmetries and obtain reductions of biharmonic PDEs to
ODEs. Moreover, we find conservation laws by using celebrated Noether’s theorem and also by
means of multipliers approach. The article is arranged as, we firstly, present definitions and re-
sults that will be used in this sequel. In Section 2, the determining equations associated with
biharmonic PDE are obtained, Lie symmetries are calculated and reductions of biharmonic PDEs
to ODEs are presented. Noether symmetries and conservation laws are computed in Sections 3
and 4, respectively.

Recall that, the Lie point symmetry of a system of differential equation is a local group of
transformations which maps each solution of the system to its another solution. These symmetries
are used to solve the differential equations. Moreover, Lie symmetries are applied to reduce the
order of differential equations and to obtain the conservation laws.

Variational symmetries or symmetries of Lagrangian also known as Noether symmetries and
Lie symmetries or symmetries of corresponding Euler-Lagrange equations (generally symmetries
of differential equations) are considerably studied in the literature ([1], [5]). Moreover, Lie sym-
metry method is powerful tool for solving differential equations, [6]. It is used to reduce the sys-
tems of differential equations into equivalent systems of simpler forms. Likewise, these methods
are used to reduce the order of differential equations and reductions of number of independent
variables in case of PDEs. The Noether symmetries are more powerful due to the fact that they
can give double reductions of differential equations [9]. In addition conservation laws are either
obtained from these symmetries by mean of celebrated Noether’s theorem ([8], [17]) or by direct
construction methods [2] or by partial Lagrangian approach [7].
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2 Lie Symmetries

We suppose, the PDE in equation (1) admits the one-parameter Lie group of point transfor-
mations with infinitesimal generator (vector field) given by,

0 0 0
XZf(%y,U)afx+C(x,y,u)a—y+n(x,y,u)%. (2)

The fourth prolongation of the generator X in equation (2) is given by,

0 0 0 0
Uy, % Lo % e 9 @ (4) 3
+ 1 o + 1y au, + Naw B o Mgy Ditneny + Nyyyy Ty (3)
here, the extended infinitesimals 7(*) satisfies following relations,
1) _ Din — (D:EDws 4
n; " = Din— (Di&;)uy, (4)
k k—1
Wz(li)z...ik = Diknglig..?ik,l = (D3 §5)Wisin. g 17 5)
k =1,2,3,4 and D; being total derivative operator [3].
Here, the invariance condition is given by
X [Uazze + 2Usayy + Uyyyy — f(u)] ‘umm+2umyy+uyyyyff(u):0~ (6)
The above equation leads to symmetry determining equation given by

Now we consider some cases for the function f(u).

Case I: If f is arbitrary function of « then from symmetry determining equation (7) we get the
following admitted Lie point symmetry generators

0 0 0 0

X, = — X0 = — X = —y— — 8
1 2= 5y’ 3 y8x+x8y’ (8)
which is three dimensional Lie Algebra. The commutation relations satisfied by these symmetry
generators are given in Table 1.

Table 1: Lie brackets for the admitted Lie point symmetries of equation (1).

X, X,] | X1 | Xz | Xs
X, 0 | 0] X
X, 0 | 0| -X
X; | -X | X1]| O

Reduction under X1, X5
Since [X7, X2] = 0, so either of X; or X5 can be used to start reduction with. We begin with X;.

0
The characteristic equation associated with X; = 7 is
T

dr _dy _du

1 0 0 ®)
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So we have y = r and u = w(r), therefore equation (1) reduces to

d*w

L = fw). (10)

The symmetry analysis of this equation is given by Bokhari et al [4]. For the present case the
equation (10) has symmetry generator

9
or’
Moreover, in this case, the Lie reduction gives rise to the third order ODE given by

5 (15 (7= (552))) = f1e (12)

0
Here, & = w and § = ' are invariants of translation group generated by —. In the absence of

(11)

r
further symmetries, one cannot further proceed. Reduction for the symmetry generator X3 is

d*w dPw Pw

27 _— —_— =
16s 7ot + 64s 73 +32 72 fw). (13)
. d*w .
By using v = L the above equation takes the form
d*v dv
2 —

The solution of equation (14) subject to separated boundary conditions u(a) = 0 and u(b) = 0 is
given by

b
v = / G(s,t)h(v)dt. (15)
Here G(s,t) is the Green function associated with the equation (14) and is given by

w’ ifa <s<t,
Gsty =] T (16)
@;2W5ﬂJﬂgsgh

Case II: If f is an exponential function of the form f = de*, where 6 = =£1, then the equation
(1) can be expressed as

Ugzze T 2WUazyy + Uyyyy = 0€". (17)
The admitted Lie point symmetries in this case are
0 0 0 0 0 0 0
Yi=—, Yo=-—, Ys=o—Fy——u—, Yi=y——c—. 1
1 ox’ 2 8:1]’ 3 x8m+y0y u8u7 4 yax xay ( 8)

which is four dimensional Lie algebra. The commutation relations for this case are expressed in
following Table 2.

Reduction under Y3,Y,
Here [Y3, Y] = 0, so we can have reduction with either Y3 or Y. We start with Y;. The Character-

- . . 9 .
istic equation corresponding to Yy = y% —x—is

dy

de dy du
= _ L _ = 19
s 0 (19)

214



Y. Masood et al. Malaysian J. Math. Sci. 17(2): 211-225 (2023) 211 - 225

Table 2: Lie brackets for the admitted Lie point symmetries of equation (17).

Y, Y;] | Y1 Y, | Y3 | Y,

Y 0 0 | V)| Y,
Ya 0 0 | Y2 | W
Ys | V.| Yo 0] 0

Y, Yo | -1 | O 0

From above equation we have u = w and 22 4+ y* = s. Using these change of variables, rewrite the
equation (17)

d*w 3w d*w
1652 —— 4s—— 2— = de". 2
6s 7ot +6 S +3 12 de (20)
. 0 0 .
Reductions of the PDE (17) for the generators 2 and 90 18
x Y
d*w
T = de®. (21)

Case III: If f is general power law, f = du® where 6 = £1 and o # 0, 1 then rewrite the equation
(1) as
Uzgze + 2Uzzyy + Uyyyy = 0U°. (22)

The admitted Lie point symmetry generators are given by

0 0 0 0 0 0 du 0
= — Z = — Z = Yy— — r— Z = r— _— e
Ox’ 27 oy’ 3= Yoz xay’ * x8w+y8y oc—10u

A

(23)

which is four dimensional Lie algebra. The commutation relations satisfied by these generators
are presented in Table 3.

Table 3: Lie brackets for the admitted Lie point symmetries of equation (22).

[Z1,7;] | Z1 | Z2 | Zs | Za
7 0 0 | -2 | 4
Zs 0 0 | Z1 | Z
75 Zo | —Zi | 0 |0
Zi | -Zi| -2, 0 |0

Reduction under Z1 and Z,

In this case the two symmetry generators Z; and Z, satisfy the relation [Z,, Z,;] = Z;. This suggest
that reduction in this case should start with Z;. The similarity variables are y = r and v = w(r)
reduce the PDE (22) to an ordinary differential equation given by

d*w -
. . . 1 112 o 1 . s g
which admits a Lagrangian L = W - ?w0+ with variational symmetry
o
9
or’

with corresponding Noether first integral leading to

—ww" + lw//Q + g wa+1 = 0.
2 o+1
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This ODE admits two Lie symmetries

0 0 4 0
O A e b

and since [Y7, Y2] = Y3, a first reduction by Y7 leads to the second-order ODE

5

——a’t =0.
U—I—la

WSW/I + %W2wl2 _

where W = W(a), « = w and W = w'. This second order ODE inherits the symmetry Y> which
in the transformed variables is

w
and V = ——, so that the second order ODE reduces to the first
o 4

which has invariants 5 = =z

order ODE, after some Calculatlons,

dv (62 —1)B%0 +2(c +1)5%?* — 46

dg (o +1)B3(0 +3)3 — 4]

The above equation can expressed in the following form

dv As A
dﬁA0+<A16+B3) <A3+63> (A5+ 56+537> 3. (25)

Here A;,0 < i < 7 depend on ¢ and ¢ and are independent of s and v. If vy = vo(8) is particular

solution of equation (25), the substitution v — vy = % reduces it to an Abel equation [13] of second
kind
¢dy = —(3f305 + 2f2v0 + f1)6° — (Bfsvo1,)é — fs, (26)

where f; for 0 < ¢ < 3depends on 3 and are coefficients of vf’ in the equation (25). The substitution
¢ = E(B)vy brings equation (26) to the simpler form

Yy’ = Fi(B)Y + Fo(B), (27)
3 f3v04p, _ /3 . .
where F(3) = TR and Fy(B) = — F2(3) The equation (27) can be reduced by introduc-
ing a new independent variable v = [ F/(3)df to canonical form
Yy =1 +0(y), (28)
Fy(B) . . .
where 0(~) = Fi(3) The solutions of equation (28) are given by [14].
1
The reductions of PDE (22) for Lie symmetry 8%/ is given by
d*w -

Moreover, for the symmetry generator yag - (,;9 the PDE (22) reduces to

d*w Pw | dPw
165 Qd—4+64 F+32W = ouw’. (30)
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3 Noether Symmetries

The Noether symmetry or the strict variational symmetry is associated with the mechanical
systems having a Lagrangian L. Moreover, the Lagrangian function L is obtained from the action
integral given by

J[u] 2// Lz, y, U, Uz, Uy, Uz, Ugy s Uy ) AT dy. (31)
s

For details about the Lagrangian and relation ship between symmetries and conservation laws see
[8]. Now the Lagrangian L associated with the equation (1) is given by

1 1
L=g(u)— iuiz — 2u?2!y uiy (32)
Here, ¢’'(u) = f(u). The vector field (2) is called a Noether symmetry (variational symmetry)
of Lagrangian L if the functional f f S Ldxdy is invariant. It turns out that, with zero gauge, X
satisfies the invariance condition given by

XPIL + L(D.£ + Dy¢) = 0. (33)
Here X2 is the second prolongation of the vector field X given by

d i) 9
[ S @ 9 |, 9 -+ ey

9
XE =X iD=+ T Dt Dty Dy

T Ouy

+1 (34)
As in Lie symmetry, here we also consider cases on the function g(u).

Case I: If g(u) = éu”, where o # 0, —g and § = %1. Then from equation (33), we get the fol-

lowing Noether symmetries

0 0 0 0 0 0 2 0
Vi=gp Vemgy Vsmag gy Vasvgptag Vs pug (39
Case IL: If g(u) = du~ 3, then the admitted Noether symmetries are
0 0 0 0 0 0 6 0
= — = — = R — V = —UYy— —_— V = —Uu—.
" oz’ & oy’ Vs x8x+y8y’ : y@x—’_xay’ 57 58 (36)

Case III: If g(u) = de?™, where 4,y = £1. In this case the Noether symmetries are

0 0 0 0 0 0 20
Vl*%, V2787y’ ngx%era—y, V4**y%+$afy7 Vs = S ou (37)
Case IV: If g(u) = sin(u), then the Noether symmetries are
0 0 0 0 0 0 0
= — = — = r— _— = —UYy— _— = _2 e
i oz’ V2 oy’ Vs Tow +y8y’ Ve Yor +x3y’ Vs tan(u)@u (38)
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4 Conservation Laws

Conservation laws have many significant uses in the study of differential equations. In partic-
ular, with regard to integrability and linearization, constant of motion, analysis of solutions and
numerical solution methods. For variational equations, Noether’s theorem can be used to con-
struct the conserved vector (T, T%). In the absence of knowledge of Noether symmetries or in
non variational cases, alternative approaches may be used like the ‘multiplier’ method [3] and
some "homotopy’ integral.

In our study we write the conservation laws as conserved vectors, i.e., if
D,T* + D,TY = 0, (39)

along the solutions of the differential equation E(x,y, u, s, Uy, Uy, . ..) = 0, then (7%, TY) is the
conserved vector and the conserved form is given by

TY Dz — T Dy. (40)

Here D, and D, denote the total derivative operators and are given by

0 0 0

Drii“i”uavi“i’u?r + )
0 ou Oy 41
o 0 9 (41)

Now, we state the Noether’s theorem and apply it to determine conservation laws.

Theorem 4.1. If the vector field X in (2) is a Noether symmetry then the conserved vector (T, TV) is
given by

oL oL oL oL oL
T =L —Dy—— —D D,w——+ D , 42
f+w <8u$ OUgy Y Oy ) t Dew OUgy Py OUgy (42)
oL oL oL oL oL
TV = % _p, -D D, Dyw———. 43
CFw <8uy Oy Y Ouy, ) P Oty TP Oy (43)

Here w = (n—uy&—u,() is the characteristic of X and D, D, are the total derivative operators

[3].

The conserved vectors can also be calculated by using multiplier method. For given indepen-
dent variables z, y and dependent variable u, the Euler operator is defined by

%:%— xai—Dyail+Dx285m+DyQaiy+Dnyaiy+.... (44)
For a mth order partial differential equation
E(x,y, U, Ug, Uy, Ugg, gy, Uy - - ) = 0. (45)
The multiplier @ for (45) has the property
D,T* + D,TY = QF, (46)

for arbitrary function u(z, y) [12]. The determining equation for multipliers are obtained by taking
the variational derivative of (46) [12]

%(QE) = 0. (47)
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equation (47) holds for arbitrary function u(x,y) not only for solutions of (45). We can find
conserved vectors using (46) after computing the multiplier from equation (47).

Now we find the conserved vectors by using Noether theorem and by multiplier approach.

4.1 Arbitrary g(u)

1. 20, — y0, - angular momentum :

1 1
2 2
(:cg (u) — ixum + ixuyy — Uplyy — UyyYUay + UylUzy — UgyYlUzs — LlUyUyyy

— DUy Ugzy + YUgUyyy + yumumy> Dz
+ <yg (u) + iyumxz - §yuyy2 T UgUgy — UpyTUyy — Uggly — UggTUgy + TUyUgyy
+ TUyUggpr — YUgUgyy — yuxuzwm) Dy
2. 0y - linear momentum in y:
(g (u) = %“M’Q + %“y.ﬁ = Uylyyy — “y“wxy> Dz
+ ( — UgyUyy — UzyUpz + Uylagyy + uyumx) Dy.
3. 0, - linear momentum in x:
(uxyuyy T Upy Uy — Uglyyy — uzumy> Dz

1

1

4. 0, +y0, :

2 2
Ylyy” + YlUgy” — 20U UGy — 2YUyUpry — TUgUyyy — YUy Uyyy

1, 1
(319(11)—2yum +5

+ 2UgUgy + 2XUpg Uy + TUgyUyy + uyuyy> Dz
(51)

1 1
+ ( —zg(u) — ixumf + ixuny - xumy2 + UL Ugzr + YUyUgas + 20Uz Ugyy

+ 2YUy Ugyy — UglUgr — YUzoUzy — 2Uylzy — 2yuyyuzy> Dy.
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5 -2 g/(“) B0
9'(u)
g(u) g9(u) 9(w)g" (u)
(=502 o 4 = A5G e =2
1
— QMUZ, uyy> Dx
(9/(w) )
g9(u) g9(u) g(u)g" (u)
+ ( + 29’(u) Uggz + 4g’(u) Ugyy T+ 2Ug Ugy + 2 (7 ()2 Ug Ugg + Uy Ugy
g(u)g" (w) )
+ 4=——"—"Luy, Ugy | Dy.
(¢'(u))? 7"
Next, we consider some special cases for function g(u).
42 g(u) = ou’
1. 20y — yOy:
o 1 2 1 2
zodu’ — ixum + ixuyy — Uyy Uy — UyyYlgy + Ugyly — UgpyYlge — TlyUyyy
— DUy Ugzy + YUgUyyy + yumumy> Dx
1 ) (53)
+ <y5 u? + iyumf - iyuyf + UpyUy — UgyTUyy — Ugally — UpaTUgy + TUyUgyy
+ TUYUppr — YUz Ugyy — yuacuxmc) Dy.
2. Oy:
o 1 2 1 2
du? — Uaa + SUyy” — Uylyyy — Uylaay Dz
(54)
+ ( = UyyUzy — UgyUzy + Uylgyy + uyumx> Dy.
3. 0y:
(uyyuxy F UgyUgy — Uz Uyyy — uxumy> Dzx
(55)

1 1
+ ( —ou’ — §Umg;2 + auyyz T+ UgUgyy + uwumxw>Dy
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Additionally, for the PDEs

o—1
ou — Ugzzs — Uyyyy — 2Uzzyy = 0, (56)

we have additional conservation laws, in fact, infinitely many if we consider higher-order

cases.
Firstly, with additional first-order multipliers, we get, for e.g.,
a. Q=¢e":
1 X
— ge 3Uyyy + 3 Ugzy — 2Uzy + Uy | Dx
: (57)
_ Befv(_ BUgyy — 3Ugze + Uyy + 3Ugz — 3 Uy +3u>Dy.
b. Q =sina:
. . 1.
( — Uyyy SIN (X)) — Uggy sin () + 2/3 uyy cos (z) + 3Uy Sin (x) >D:c
(58)

1
+ (uwyy sin (z) + Ugpq sin (z) — 3 Uyy €08 () — Ugy cos (z) — uy sin (z) + u cos (x) ) Dy,

and an example of a higher-order multiplier/conservation law is

C. Q= Upay:

1 1 1 1 1
( - §uyyyuwwy - iuwmyQ + §uyyuacwyy + guwyuzwwy - éuwmuxzyy + guwacu

1 1 1 1 1 5 n 1
— ZUzzUgprx — 7 UgzUW — JUyUzryyy — ZUyUzzzay — 7 Uz SUpUgrrre

1 1 1
+ 7uzua:yyyy + 7uuwa:yyyy + guuzwzxyy - éuuwzmzajx Dz

6 3 (59)

(2umyyuxxy + §uxm:vuza:y - guyyuzzzy + guzyumzyy - g uzyu + guzyumzzz
1 1

+ gua:yuyyyy - iuzxumwzy + guyua: - Euyummwzz - Euyua:yyyy - guxuzzyyy
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Ou’ Tl — Uppr — Uyyyy — 2Uzayy = 0, o= -2, (60)

(a) Q= z%uy — y?uy + 2yu — 2yzu,:

1

~ o [(8 Uy ?u? + 4 ugu® — 12uyyu® + 3 2% Upryyu® — 3y Upryyu®

222 -10 ztmyu?ygcuz

+ 3x2ummu3 — 3y2ummu3 — 2umyQu
— 6 Uyyy U YTUL + 6 Uy U YTULL + 6 Uy U YTULy — 6 Uy U YT ULy,

-2 uyu2y:zcuggmc +6 ymummyu3 +6 ymumyyyu?’ —6 uyquuyy

-2 uyu2yum + 4umyu2x2uy — 4umyu2y2uy + 10 uyyuzxum

—12 uwyuzxuy — umu2uyyx2 + umuzuyyy2 -2 umu%uw

—4 umu2uzyy +6 uyyyuzxzuy —6 uyyyu2y2uy —2 uxu2umyyy2

+ 2 uqunyyﬁ +3 uyy2u2y2 + 18 uyyyyu3 + 6 TUpgau® + 2 uzy2u2y2
— 3y, u?2? + 6 Ugyyu® + 18 Uygyyu® + 6275 — 6 y25> Dz

(61)

2,3 2,3 3 2,3 2,3
(3 UgyyyT U — 3 UgyyyY U + 6 UyyyTU° + 3 Ugpay T U° — 3 Ugrayy U

+ 6 umnyS -8 uxu2uy — 18 yuxmu3 — 18 uxyyyUS +8 uxyyuzyxux
-2 uyyu2ymum + 4uyu2umyya: + 12 umzuzyxuz +6 ymuguyyyy

+ 6 Y2UP Uy + 3 U Uz Y + 5 Uy Uy Uy — 5 Uy u®ruy

— 3 Upra T2 Uy + 3 Uprr YUy — 2 Uy uTUy + 3 Uy u Uy T

-3 uyyuQuzny —12 uzyuzxux —4 uzy2u2yaﬁ + 10 umu2xuy

—6 um2u2yx +3 umlﬂuwm2 -3 ugcgcuZuxyy2 + 4uyu2uwy

2 2 2 2 2 2
+ 2UgU YUy + UgU Uy Y™ — UgU Uy T + 6 Uz U YU,

— 3uzu2umym2 + 16 uzyu?’ + 12 yx(5> Dy] .

421 g(u) = Su~3

i. 20, —y0,:
— ut ( —2x6 + xum2u5/3 — xuyy2u5/3 + 2uzuyyu5/3 + 2 uyyyuzyuw?’ — 2uyuzyu5/3
us
+2 uxyyumu‘r’/?’ + 2 xuyuyyyu5/3 +2 muyumyu5/3 -2 yuzuyyyus/?’
-2 yuzumyus/?’) Dx
(62)
+ " (2 yo + yum2u5/3 — yuyy2u5/3 + 2 umumyuw?’ — 2umyxuyyu5/3 — 2umuyu5/3
us

-2 umxuzyus/?’ + 2 xuyuzyyu5/3 +2 xuyummu5/3 -2 yuzuzyyuwg’

-2 yuzumxius/?’) Dy.
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ii. Oy:
1 . ) )
- — ( — 28 + ugp2uP —u yQuE’/‘3 + 2uyuyyyu5 34 2 UyUgayt / >Dz
2us
(63)
( — UgyUyy — UgyUge + Uylgyy + uyuul> Dy.
iii. O0,:
(64)

<uzyuyy F Ugy Uz — Uz Uyyy — urumy> Dx
( — 26 — upu® + uyy2u5/3 + 2u$uwyyu5/3 + 2 UpUggptt /3) Dy

1
2u

5
3

43 g(u) = sin(u)
TUyy™ — Uyy Uy — UyyYlzy + UgylUy — UzyYUzz — TUylyyy

i 20y — y0,:
(65)

2
— TUyUgzy + YUz Uyyy + yuwumv) Dz

1 2
yuyy + ua:yu:r -

1
(a: sin (u) — =2uze? + 5
UgyTUyy — UggUy — UggLUgy + TUyUgyy

. 1
+ (y sin (u) + 5 YUas” — 5
ii. Oy
_ 1, 1
sin (u) — iu” + §uyy — UyUyyy — Uylgay | Dx
(66)
+ ( = UyyUzy — UpyUzz + Uylzyy + uyuxm) Dy.
iii. dg:
(u$yuyy F Ugy Uy — UgUyyy — uwuxg;y) Dz
(67)
1 o 1
— SUgy” + §uyy + Uy Uzyy + UgUpzx Dy

+ (—sin(u) >

5 Conclusions
In this paper, we have classified the symmetries and conservation laws of the fourth-order
223

biharmonic PDE; the technique presented here set the scene for further interesting studies of high-
order nonlinear PDEs of mathematical physics. One can consider time dependent biharmonic

equation in (2 + 1) dimension.
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